

Installer manual

AMS 10-6 / 10-8 / 10-12 / 10-16

Air/water heat pump

IHB EN 1749-2 331942

Table of Contents

1	Important information	4
	- System solution	4
	Safety information	4
	Serial number	6
	Recovery	6
	Environmental information	6
	Checklist: Checks before commissioning	7
2	Delivery and handling	8
	Transport and storage	8
	Assembly	8
	Removing the covers	12
3	The heat pump design	14
	Component locationAMS 10	14
	Electrical panel	19
	Sensor placement	21
4	Pipe connections	24
5	Electrical connections	25
	General	25
	Electrical components	26
	Accessibility, electrical connection	26
	Connections	27
6	Commissioning and adjusting	30
	Compressor heater	30
7	Control - Heat pump EB101	31
8	Disturbances in comfort	32
9	Alarm list	33
10	Accessories	36
11	Technical data	38
	Dimensions	38
	Sound pressure levels	42
	Technical specifications	43
	Energy labelling	51
	Electrical circuit diagram	56
lte	m register	60
Со	ntact information	63

1 Important information

System solution

AMS 10 is intended for installation with NIBE SPLIT Box HBS 05 and indoor module (VVM) or control module (SMO) for a complete system solution.

Safety information

This manual describes installation and service procedures for implementation by specialists.

The manual must be left with the customer.

This appliance can be used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved. The product is intended for use by experts or trained users in shops, hotels, light industry, farming and similar environments.

Children must be instructed/supervised to ensure that they do not play with the appliance.

Do not allow children to clean or maintain the appliance unsupervised.

This is an original manual. It may not be translated without the approval of NIBE.

Rights to make any design or technical modifications are reserved.

©NIBE 2017.

Symbols

NOTE

This symbol indicates danger to person or machine .

Caution

This symbol indicates important information about what you should observe when maintaining your installation.

TIP

This symbol indicates tips on how to facilitate using the product.

Marking

- **CE** The CE mark is obligatory for most products sold in the EU, regardless of where they are made.
- **IP21** Classification of enclosure of electro-technical equipment.

Danger to person or machine.

Read the User Manual.

Safety precautions

Caution

Install the system in full accordance with this installation manual.

Incorrect installation can cause bursts, personal injury, water leaks, refrigerant leaks, electric shocks and fire.

Pay attention to the measurement values before working on the cooling system, especially when servicing in small rooms, so that the limit for the refrigerant's concentration is not exceeded.

Consult an expert to interpret the measurement values. If the refrigerant concentration exceeds the limit, there may be a shortage of oxygen in the event of any leak, which can cause serious injury.

Use original accessories and the stated components for the installation.

If parts other than those stated by us are used, water leaks, electric shocks, fire and personal injury may occur as the unit may not work properly.

Ventilate the working area well – refrigerant leakage may occur during service work.

If the refrigerant comes into contact with naked flames, poisonous gas is created.

Install the unit in a location with good support.

Unsuitable installation locations can cause the unit to fall and cause material damage and personal injury. Installation without sufficient support can also cause vibrations and noise.

Ensure that the unit is stable when installed, so that it can withstand earthquakes and strong winds.

Unsuitable installation locations can cause the unit to fall and cause material damage and personal injury.

The electrical installation must be carried out by a qualified electrician and the system must be connected as a separate circuit.

Power supply with insufficient capacity and incorrect function can cause electric shocks and fire.

Use the stated cables for the electrical connection, tighten the cables securely in the terminal blocks and relieve the wiring correctly to prevent overloading the terminal blocks.

Loose connections or cable mountings can cause abnormal heat production or fire.

Check, after completed installation or service, that no refrigerant leaks from the system in gas form.

If refrigerant gas leaks into the house and comes into contact with an aerotemp, an oven or other hot surface, poisonous gases are produced.

Switch off the compressor before opening/breaching the refrigerant circuit.

If the refrigerant circuit is breached /opened whilst the compressor is running, air can enter the process circuit. This can cause unusually high pressure in the process circuit, which can cause bursts and personal injury.

Switch off the power supply in the event of a service or inspection.

If the power supply is not shut off, there is a risk of electric shocks and damage due to the rotating fan.

Do not run the unit with removed panels or protection.

Touching rotating equipment, hot surfaces or high voltage parts can cause personal injury due to entrapment, burns or electric shocks

Cut the power before starting electrical work.

Failure to cut the power can cause electric shocks, damage and incorrect function of the equipment.

Care

Carry out the electrical installation with care.

Do not connect the ground lead to the gas line, water line, lightning conductor or telephone line's ground lead. Incorrect grounding can cause unit faults such as electric shocks due to short-circuiting.

Use main switch with sufficient breaking capacity.

If the switch does not have sufficient breaking capacity, malfunctions and fire can occur.

Always use a fuse with the correct rating in the locations where fuses are to be used.

Connecting the unit with copper wire or other metal thread can cause unit breakdown and fire

Cables must be routed so that they are not damaged by metal edges or trapped by panels.

Incorrect installation can cause electric shocks, heat generation and fire

Do not install the unit in close proximity to locations where leakage of combustible gases can occur.

If leaking gases collect around the unit, fire may occur.

Do not install the unit where corrosive gas (for example nitrous fumes) or combustible gas or steam (for example thinner and petroleum gases) can build up or collect, or where volatile combustible substances are handled.

Corrosive gas can cause corrosion to the heat exchanger, breaks in plastic parts etc. and combustible gas or steam can cause fire.

Do not use the unit where water splashes may occur, for example in laundries.

The indoor section is not waterproof and electric shocks and fire can therefore occur

Do not use the unit for specialist purposes such as for storing food, cooling precision instruments, freeze-conservation of animals, plants or art.

This can damage the items.

Do not install and use the system close to equipment that generates electromagnetic fields or high frequency harmonics. Equipment such as inverters, standby sets, medical high frequency equipment and telecommunications equipment can affect the unit and cause malfunctions and breakdowns. The unit can also affect medical equipment and telecommunications equipment, so that it functions incorrectly or not at all.

Do not install the outdoor unit in the locations stated below.

- Locations where leakage of combustible gas can occur. - Locations where carbon fibre, metal powder or other powder that can enter the air.

- Locations where substances that can affect the unit, for example,

sulphide gas, chlorine, acid or alkaline substances can occur.

- Locations with direct exposure to oil mist or steam.
- Vehicles and ships.

- Locations where machines that generate high frequency harmonics are used.

- Locations where cosmetic or special sprays are often used.

- Locations that can be subjected to direct salty atmospheres. In this case, the outdoor unit must be protected against direct intakes of salty air.

- Locations where large amounts of snow occur.

Locations where the system is exposed to chimney smoke.

If the bottom frame of the outdoor section is corroded, or in any other way damaged, due to long periods of operation, it must not be used.

Using an old and damaged frame can cause the unit to fall and cause personal injury.

If soldering near the unit, ensure that solder residue does not

damage the drip tray. If solder residue enters the unit during soldering, small holes can appear in the tray resulting in water leakage. To prevent damage, keep the indoor unit in its packing or cover it.

Do not allow the drainage pipe to exit into channels where

poisonous gases, containing sulphides for example, can occur. If the pipe exits into such a channel, any poisonous gases will flow into the room and seriously affect the user's health and safety.

Insulate the unit's connection pipes so that the ambient air moisture does not condense on them.

Insufficient insulation can cause condensation, which can lead to moisture damage on the roof, floor, furniture and valuable personal property

Do not install the outdoor unit in a location where insects and small animals can inhabit.

Insects and small animals can enter the electronic parts and cause damage and fire. Instruct the user to keep the surrounding equipment clean.

Take care when carrying the unit by hand.

If the unit weights more than 20 kg, it must be carried by two people. Use gloves to minimize the risk of cuts.

Dispose of any packaging material correctly.

Any remaining packaging material can cause personal injury as it may contain nails and wood

Do not touch any buttons with wet hands.

This can cause electric shocks

Do not touch any refrigerant pipes with your hands when the system is in operation.

During operation the pipes become extremely hot or extremely cold, depending on the method of operation. This can cause burn injuries or frost injuries.

Do not shut off the power supply immediately after operation has start.

Wait at least 5 minutes, otherwise there is a risk of water leakage or breakdown

Do not control the system with the main switch.

This can cause fire or water leakage. In addition, the fan can start unexpectedly, which can cause personal injury.

Especially for units intended for R410A

- Do not use other refrigerants than R410A. R410A means that the pressure is about 1.6 times as high as conventional refrigerants.

- Do not use charging bottles. These types of bottles change the composition of the refrigerant, which makes the performance of the system worse.

- When filling refrigerant, the refrigerant must always leave the bottle in liquid form.

Serial number

You can find the service code and the serial number (PF3) on the right-hand side of AMS 10.

Caution

You need the product's service code and serial number for servicing and support.

Recovery

' Leave the disposal of the packaging to the installer who installed the product or to special waste stations.

Do not dispose of used products with normal household waste. It must be disposed of at a

special waste station or dealer who provides this type of service.

Improper disposal of the product by the user results in administrative penalties in accordance with current legislation.

Environmental information

The equipment contains R410A, a fluorinated greenhouse gas with a GWP value (Global Warming Potential) of 2088. Do not release R410A into the atmosphere.

Checklist: Checks before commissioning

Refrigerant system	Notes	Checked
Pipe length		
Height difference		
Pressurization test		
Leak testing		
End pressure vacuum		
Pipe insulation		
Electrical installation	Notes	Checked
Property's main fuse		
Group fuse		
Load monitor / current sensor (Connects to indoor module / control module.)		
KVR 10		
When installing AMS 10-6 / HBS 05-6, check that the software version of the in- door module/control module is at least v8320.		
Cooling	Notes	Checked
Pipe system, condensation insulation		

2 Delivery and handling

Transport and storage

AMS 10 must be transported and stored vertically.

NOTE

Ensure that the heat pump cannot fall over during transport.

Assembly

- Place AMS 10 outdoors on a solid level base that can take the weight, preferably a concrete foundation. If concrete slabs are used they must rest on asphalt or shingle.
- The concrete foundation or slabs must be positioned so that the lower edge of the evaporator is at the level of the average local snow depth; however, a minimum of 300 mm. See our stands and brackets on page 36.
- AMS 10 should not be positioned next to noise sensitive walls, for example, next to a bedroom.
- Also ensure that the placement does not inconvenience the neighbours.
- AMS 10 must not be placed so that recirculation of the outdoor air can occur. This causes lower output and impaired efficiency.
- The evaporator should be sheltered from direct wind, which negatively affects the defrosting function. Place AMS 10 protected from wind against the evaporator.
- Large amounts of condensation water, as well as melt water from defrosting, can be produced. Condensation water must be led off to a drain or similar (see page9).
- Care must be exercised so that the heat pump is not scratched during installation.

Do not place AMS 10 directly on the lawn or other non solid surface.

If there is a risk of snow slip from roof, a protective roof or cover must be erected to protect the heat pump, pipes and wiring.

Lift from the street to the set up location

If the base allows, the simplest thing is to use a pallet truck to move the AMS 10 to the set up location.

NOTE

ž

The centre of gravity is offset to one side (see print on the packaging).

If AMS 10 needs to be transported across soft ground, such as a lawn, we recommend that a crane truck is used that can lift the unit to the installation location. When AMS 10 is lifted with a crane, the packaging must be undamaged and the load distributed with a boom, see the illustration above.

If a crane cannot be used AMS 10 can be transported using an extended sack truck. AMS 10 must be used on the side marked "heavy side" and two people are required to get the AMS 10 up.

Lift from the pallet to final positioning

Before lifting remove the packaging and the securing strap to the pallet.

Place lifting straps around each machine foot. Lifting from the pallet to the base requires four persons, one for each lifting strap.

It is not permitted to lift anything other than the machine feet.

Scrapping

When scrapping, the product is removed in reverse order. Lift by the bottom panel instead of a pallet!

Condensation run off

Condensation runs out on to the ground below AMS 10. To avoid damage to the house and heat pump, the condensation must be gathered and drained away.

NOTE

It is important to the heat pump function that condensation water is led away and that the drain for the condensation water run off is not positioned so that it can cause damage to the house.

NOTE

To ensure this function, the accessory KVR 10 should be used. (Not included)

NOTE

The electrical installation and wiring must be carried out under the supervision of an authorised electrician.

NOTE

Self regulating heating cables must not be connected.

- The condensation water (up to 50 litres / 24 hrs) must be routed away by a pipe to an appropriate drain, it is recommended that the shortest outdoor length possible is used.
- The section of the pipe that can be affected by frost must be heated by the heating cable to prevent freezing.
- Route the pipe downward from AMS 10.
- The outlet of the condensation water pipe must be at a depth that is frost free or alternatively indoors (with reservation for local ordinances and regulations).
- Use a water trap for installations where air circulation may occur in the condensation water pipe.
- The insulation must be tight against the bottom of the condensation water trough.

Drain pan heater, control

The drain pan heater is supplied with power when one of the following conditions is met:

- 1. The compressor has been in operation for at least 30 minutes after last start.
- 2. The ambient temperature is lower than 1 $^{\circ}$ C.

Recommended alternative for leading off condensation water

The condensation water is lead to an indoor drain (subject to local rules and regulations).

Route the pipe downward from the air/water heat pump.

The condensation water pipe must have a water seal to prevent air circulation in the pipe.

KVR 10 spliced as illustrated. Pipe routing inside house not included.

Stone caisson

If the house has a cellar the stone caisson must be positioned so that condensation water does not affect the house. Otherwise the stone caisson can be positioned directly under the heat pump.

The outlet of the condensation water pipe must be at frost free depth.

Gutter drainage

Bend the hose to create a water seal, see illustration.

- The outlet of the condensation water pipe must be at frost free depth.
- Route the pipe downward from the air/water heat pump.
- The condensation water pipe must have a water seal to prevent air circulation in the pipe.
- The installation length can be adjusted by the size of the water seal.

Caution

If none of the recommended alternatives is used good lead off of condensation water must be assured.

Installation area

The recommended distance between AMS 10 and the house wall must be at least 15 cm. Clearance above AMS 10 should be at least 100 cm. However, free space in front must be 100 cm for future servicing

Removing the covers

AMS 10-6

AMS 10-8

AMS 10-12

3 The heat pump design

Component locationAMS 10 Component locations AMS 10-6 (EZ101)

Component locations AMS 10-8 (EZ101)

Component locations AMS 10-12 (EZ101)

Component locations AMS 10-16 (EZ101)

List of components AMS 10 (EZ101)

205	4-way valve
63H1	High pressure pressostat
CM (GQ10)	Compressor
DH (EB11)	Drain pan heater
EEV (QN1)	Expansion valve, cooling
EEV-H (QN2)	Expansion valve, heating
FM01 (GQ1)	Fan
FM02 (GQ2)	Fan
LPT	Low pressure transmitter
PWB1	Control board
PWB2	Inverter board
PWB3	Filter board
QM35	Service valve, liquid side
QM36	Service valve, gas side
TB (X1)	Terminal block, incoming supply and
	communication
XL21	Connection, service
XL52	Connection, gas line
XL53	Connection, liquid line

Cooling components

EP1 Evaporator

Miscellaneous

Designations in component locations according to standard IEC 81346-1 and 81346-2.

Electrical panel

Component locationAMS 10

AMS 10-6

AMS 10-8

AMS 10-12 / AMS 10-16

Electrical components AMS 10

CH	Compressor heater
DH	Drain pan heater
F	Fuse
FM01	Fan motor
PWB1	Control board
PWB2	Inverter board
PWB3	Filter board
ТВ	Terminal block, incoming supply and communic-
	ation

Designations in component locations according to standard IEC 81346-1 and 81346-2.

Sensor placement

Positioning the temperature sensor

Outdoor moduleAMS 10-6

Outdoor moduleAMS 10-8/AMS 10-12

BE1 (CT)	Current sensor
BT28 (Tho-A)	Temperature sensor, outdoor air
BP1 (63H1)	High pressure pressostat
BP2 (LPT)	Pressure sensor, low pressure
GQ1 (FM01)	Fan
GQ2 (FM02)	Fan
GQ10 (CM)	Compressor
QN1 (EEV-H)	Expansion valve, heating
QN2 (20S)	4-way valve
QN3 (EEV-C)	Expansion valve, cooling
Tho-D	Temperature sensor, hot gas
Tho-R1	Temperature sensor, heat exchanger out
Tho-R2	Temperature sensor, heat exchanger, in
Tho-S	Temperature sensor, suction gas

Data for sensor in AMS 10-6

Tho-D Resistor $(k\Omega)$ 200 180 160 140 120 100 80 60 40 20 0 . 90 100 110 120 130 140 150 10 20 30 40 60 70 80 Ó 50 Tho-D Temperature (°C)

Data for sensor in AMS 10-8, -12, -16

Tho-S, Tho-R1, Tho-R2

4 Pipe connections

NOTE

For information: See chapter "Pipe connections" in the Installer Manual for HBS 05.

5 Electrical connections

General

AMS 10 and HBS 05 does not include an omnipolar circuit breaker on the incoming power supply. Therefore, its supply cables must each be connected to their own circuit breaker with a breaking gap of at least 3 mm. Incoming supply must be 230V ~50Hz via electrical distribution board with fuses.

- Disconnect the SPLIT box HBS 05 and outdoor module AMS 10 before insulation testing the house wiring.
- For fuse ratings, see technical data, "Fuse protection".
- If the building is equipped with an earth-fault breaker, AMS 10 should be equipped with a separate one.
- Connection must not be carried out without the permission of the electricity supplier and under the supervision of a qualified electrician.
- Cables must be routed so that they are not damaged by metal edges or trapped by panels.
- AMS 10 is equipped with a single phase compressor. This means that one of the phases will be loaded with a number of amperes (A) during compressor operation. Check the maximum load in the table below.

Outdoor module	Maximum current (A)
AMS 10-6	15
AMS 10-8	16
AMS 10-12	23
AMS 10-16	25

Maximum permitted phase loading can be restricted to a lower maximum current in the indoor module or control nodule.

NOTE

Electrical installation and any servicing must be carried out under the supervision of a qualified electrician. Disconnect the current with the circuit breaker before carrying out any servicing. Electrical installation and wiring must be carried out in accordance with the national stipulations in force.

NOTE

Check the connections, main voltage and phase voltage before the machine is started, to prevent damage to the air/water heat pump electronics.

NOTE

The live external control must be taken into consideration when connecting.

NOTE

If the supply cable is damaged, only NIBE, its service representative or similar authorised person may replace it to prevent any danger and damage.

Principle diagram, electrical installation

* Only in a 3-phase installation.

Electrical components

See component location in chapter The heat pump design, Electrical panel on page 19.

Accessibility, electrical

connection

Removing the covers

See chapter Removing the covers on page 12.

Connections

NOTE

To prevent interference, unscreened communication and/or sensor cables to external connections must not be laid closer than 20 cm from high voltage cables.

Power connection AMS 10

Communication connection

Communication is connected on terminal block TB. See also electrical wiring diagram on page 56.

You can find more information in the Installer Manual for SPLIT box HBS 05.

Connecting accessories

Instructions for connecting accessories are in the installation instructions provided for the respective accessory. See page 36 for the list of the accessories that can be used with AMS 10.

NOTE

For more information: See chapter "Electrical connections" in the Installer Manual for HBS 05.

6 Commissioning and adjusting

Compressor heater

AMS 10 is equipped with a compressor heater (CH) that heats the compressor before start-up and when the compressor is cold. (Does not apply to AMS 10-6.)

NOTE

The compressor heater must have been connected for 6 – 8 hours before the first start, see the section "Start-up and inspection" in the Installer Manual for the indoor module or control module.

NOTE

For information: See chapter "Commissioning and adjustment" in the Installer Manual for HBS 05.

7 Control - Heat pump EB101

NOTE

For information: See chapter "Control – Heat pump EB101" in the Installer Manual for HBS 05.

8 Disturbances in comfort

NOTE

For more information: See chapter "Disturbances in comfort" in the Installer Manual for HBS 05.

9 Alarm list

Alarm	Alarm text on the dis- play	Description	May be due to
162	High condenser out	Too high temperature out from the con-	Low flow during heating operation
		denser. Self-resetting.	Too high set temperatures
163	High condenser in	Too high temperature into the condenser. Self-resetting.	Temperature generated by another heat source
183	Defrosting in progress	Not an alarm, but an operating status.	Set when the heat pump runs the de- frosting procedure
220	HP alarm	The high pressure switch (63H1) deployed 5 times within 60 minutes or for 60	Insufficient air circulation or blocked heat exchanger
		minutes continuously.	 Open circuit or short circuit on input for high pressure switch (63H1)
			Defective high pressure switch
			Expansion valve not correctly connected
			Service valve closed
			Defective control board in AMS 10
			Low or no flow during heating opera- tion
			Defective circulation pump
			Defective fuse, F(4A)
221	LP alarm	Too low a value on the low pressure sensor (LPT) 3 times within 60 minutes.	Open circuit or short circuit on input for low pressure sensor
			Defective low pressure sensor (LPT)
			Defective control board in AMS 10
			 Open circuit or short circuit on input for suction gas sensor (Tho-S)
			Defective suction gas sensor (Tho-S)
223	OU Com. error	Communication between the control	Any circuit breakers for AMS 10 off
		board and the communication board is interrupted. There must be 22 volt direct current (DC) at the switch CNW2 on the	Incorrect cable routing
		control board (PWB1).	
224	Fan alarm	Deviations in the fan speed in AMS 10.	The fan cannot rotate freely
			Defective control board in AMS 10
			Defective fan motor
			Control board in AMS 10 dirty
			Fuse (F2) blown
230	Continuously high hot gas	Temperature deviation on the hot gas sensor (Tho-D) twice within 60 minutes	Sensor does not work (see section "Communication connection")
		or for 60 minutes continuously.	 Insufficient air circulation or blocked heat exchanger
			If the fault persists during cooling, there may be an insufficient amount of refri- gerant.
			Defective control board in AMS 10
254	Communication error	Communication fault with accessory	AMS 10 not powered
		poard	Fault in the communication cable.

Alarm	Alarm text on the dis- play	Description	May be due to		
261 High temperature in heat Temperature in heat changer se within 60 m		Temperature deviation on the heat ex- changer sensor (Tho-R1/R2) five times within 60 minutes or for 60 minutes con-	 Sensor does not work (see section "Disturbances in comfort") Insufficient air circulation or blocked 		
		tinuously.	heat exchanger		
			Defective control board in AMS 10		
			Too much refrigerant		
262	Power transistor too hot	When IPM (Intelligent power module) displays FO-signal (Fault Output) five times during a 60-minute period.	Can occur when 15V power supply to the inverter PCB is unstable.		
263	Inverter error	Voltage from the inverter outside the	Incoming power supply interference		
		parameters four times within 30 minutes.	Service valve closed		
			Insufficient amount of refrigerant		
			Compressor fault		
			Defective circuit board for inverter in AMS 10		
264	Inverter error	Communication between circuit board for inverter and control board broken.	Open circuit in connection between boards		
			Defective circuit board for inverter in AMS 10		
			Defective control board in AMS 10		
265	Inverter error	Continuous deviation on power transistor	Defective fan motor		
		for 15 minutes.	Defective circuit board for inverter in AMS 10		
266	Insufficient refrigerant	Insufficient refrigerant is detected upon	Service valve closed		
		start-up in cooling mode.	Loose connection sensor (BT15, BT3)		
			Defective sensor (BT15, BT3)		
			Too little refrigerant		
267	Inverter error	Failed start for compressor	Defective circuit board for inverter in AMS 10		
			Defective control board in AMS 10		
			Compressor fault		
268	Inverter error	Overcurrent, Inverter A/F module	Sudden power failure		
271	Cold outdoor air	Temperature of BT28 (Tho-A) below the	Cold weather conditions		
272		Set value that permits operation	Sensor fault		
272	Hot outdoor air	remperature of B128 (Tho-A) above the value that permits operation	 vvarm weather conditions Concern foult 		
777	Sonsor fault The P	Concor fault, boat ovchanger in	 Sensor fault Open circuit er chert circuit en cencer 		
277	Sensor fault Tho-R	AMS 10(Tho-R).	input		
			Sensor does not work (see section "Dis- turbances in comfort")		
			Defective control board in AMS 10		
278	Sensor fault Tho-A	Sensor fault, outdoor temperature sensor in AMS 10 BT28 (Tho-A).	Open circuit or short circuit on sensor input		
			 Sensor does not work (see section "Dis- turbances in comfort") 		
			Defective control board in AMS 10		

Alarm	Alarm text on the dis- play	Description	May be due to
279	Sensor fault Tho-D	Sensor fault, hot gas in AMS 10 (Tho-D).	Open circuit or short circuit on sensor input
			 Sensor does not work (see section "Dis- turbances in comfort")
			Defective control board in AMS 10
280	Sensor fault Tho-S	Sensor fault, suction gas in AMS 10 (Tho-S).	Open circuit or short circuit on sensor input
			Sensor does not work (see section "Dis- turbances in comfort")
			Defective control board in AMS 10
281	Sensor fault LPT	Sensor fault, low pressure transmitter in AMS 10.	Open circuit or short circuit on sensor input
			Sensor does not work (see section "Dis- turbances in comfort")
			Defective control board in AMS 10
			Fault in the refrigerant circuit
294	Non-compatible outdoor	Heat pump and indoor module (VVM) /	Outdoor module and indoor module
	air heat pump	control module (SMO) do not work prop- erly together due to technical parameters.	(VVM) / control module (SMO) are not compatible.

10 Accessories

Not all accessories are available on all markets.

Air/water heat pump

SPLIT box HBS 05 HBS 05-6 Part no. 067 578

HBS 05-12 Part no.067 480

HBS 05 -16 Part no. 067 536

Condensation water pipe KVR 10-10 F2040 / HBS05

1 metres Part no. 067 233

KVR 10-30 F2040 / HBS05

3 metres Part no. 067 235

KVR 10-60 F2040 / HBS05

6 metres Part no. 067 237

Control module

SMO 20 Control module Part no. 067 224

SMO 40

Control module Part no. 067 225 Indoor module VVM 310 Part no. 069 430

VVM 310 With integrated EMK 310 Part no. 069 084

VVM320 Copper, 3x400 V Part no. 069 108

Stainless steel, 3x400 V Part no. 069 109

Enamel, 3x400 V With integrated EMK 300 Part no. 069 110

Stainless steel, 3x230 V Part no. 069 113

Stainless steel, 1x230 V Part no. 069 111

VVIM 500 Part no. 069 400

Refrigerant pipe kit 1/4" / 1/2", 12 metres, insulated,

for HBS05-6 and AMS 10-6 Part no. 067 591

3/8" – 5/8", 12 metres, insulated, for HBS 10-12/16 and AMS 10-8/12/16 Part no. 067 032

Stand and brackets

Ground stand For AMS 10-6, -8, -12, -16 Part no. 067 515

Wall bracket For AMS 10-6, -8, -12 Part no. 067 600

11 Technical data

Dimensions

AMS 10-6

AMS 10-12

Right

Sound pressure levels

AMS 10 is usually placed next to a house wall, which gives a directed sound distribution that should be considered. Accordingly, you should always attempt to find a placement on the side that faces the least sound sensitive neighbouring area. The sound pressure levels are further affected by walls, bricks, differences in ground level, etc and should therefore only be seen as guide values.

Noise		AMS 10-6	AMS 10-8	AMS10-12	AMS 10-16
Sound power level, according to EN12102 at 7/35 °C (nominal)*	L _W (A)	51	55	58	62
Sound pressure level at 2 m free standing (nominal)*	dB(A)	32	41	44	48

* Free space.

Technical specifications

Outdoor module		AMS 10-6	AMS 10-8	AMS 10-12	AMS 10-16	
Output data				1		
Heating	Outdoor	Nominal	Nominal	Nominal	Nominal	
	temp./					
	Supply					
	temp.		2.06/0.02/4.65	F 21/1 00/4 70	7.02/1.45/4.05	
Output data according to	//35°C	2.0//0.5/5.32	3.80/0.83/4.05	5.21/1.09/4.78	7.03/1.45/4.85	
EN14511 ΔT5K		2 32/0 55/4 2	5 11/1 36/3 76	6 91/1 79/3 86	9 33/2 38/3 92	
Capacity / supplied capacity / COP	(floor)	2.5210.5514.2	5.11/1.50/5./0	0.5171.7575.00	5.5572.5075.52	
(kW/kW/-)	7/45 °C	2.28/0.63/3.62	3.70/1.00/3.70	5.00/1.31/3.82	6.75/1.74/3.88	
	2/45 °C	1.93/0.67/2.88	5.03/1.70/2.96	6.80/2.24/3.04	9.18/2.98/3.08	
	2745 C					
Cooling	Outd	Max	Max	Max	Max	
	temp: /	Max	Max	INGX	Max	
	Supply					
	temp.					
Output data according to	27/7 °C	5.87/1.65/3.56	7.52/2.37/3.17	9.87/3.16/3.13	13.30/3.99/3.33	
EN14511 ΔT5K	27/18 °C	7.98/1.77/4.52	11.20/3.20/3.50	11.70/3.32/3.52	17.70/4.52/3.91	
Capacity / supplied capacity / FFR	35/7 °C	4.86/1.86/2.61	7.10/2.65/2.68	9.45/3.41/2.77	13.04/4.53/2.88	
	35/18 °C	7.03/2.03/3.45	9.19/2.98/3.08	11.20/3.58/3.12	15.70/5.04/3.12	
Electrical data						
Rated voltage		230V 50 Hz, 230V 2AC 50Hz				
Max. current	A _{rms}	15	16	23	25	
Recommended fuse	A _{rms}	16	16	25	25	
Starting current	A _{rms}		1	5		
Max fan flow (heating, nominal)	m³/h	2,530	3,000	4,380	6,000	
Fan rating	W	50	8	6	2X86	
Drain pan heater (integrated)	W	110 100 120				
Defrosting		Reverse cycle				
Refrigerant circuit						
Type of refrigerant		R410A				
GWP refrigerant		2,088				
Compressor			Twin I	Rotary	I	
Refrigerant quantity	kg	1.5	2.55	2.90	4.0	
CO ₂ equivalent	t	3.13	5.32	6.06	8.35	
Cut-out value, pressure switch, high	MPa (bar)	-		4.15 (41.5)		
pressure						
Breaking value high pressure MPa (bar)		4.5 (45)				
Cut-out value, pressure switch, low	MPa (bar)	-	- 0.079 MPa (0.79)			
pressure (15 s)						
iviax. length, retrigerant pipe, one	m		30	J^		
Max height difference, refrigerant	m			7		
	111			,		

Outdoor module		AMS 10-6	AMS 10-8	AMS 10-12	AMS 10-16			
Dimensions, refrigerant pipe		Gas pipe: OD12.7 (1/2") Fluid pipe: OD6.35 (1/4")	Gas pipe: OD15.88 (5/8") Fluid pipe: OD9.52 (3/8")					
Pipe connections								
Pipe connection option		Right-hand side	Right-hand side	Bottom / right-hand side / rear side	Bottom / right-hand side / rear side			
Pipe connections		Flare						
Dimensions and weight								
Width	mm	800	880 (+67 valve protection)	970	970			
Depth	mm	290	340 (+ 110 with foot rail)	370 (+ 80 w	ith foot rail)			
Height	mm	640	750	845	1,300			
Weight	kg	46	60	74	105			
Miscellaneous								
Enclosure class		IP	24					
Part no.		064 205	064 033	064 110	064 035			

*AMS 10-6: If the length of the refrigerant pipes exceeds 15 m, extra refrigerant must be added at a rate of 0.02 kg/m.

AMS 10-8/12/16: If the length of the refrigerant pipes exceeds 15 m, extra refrigerant must be added at a rate of 0.06 kg/m.

SCOP & Pdesign

SCOP & Pdesign AMS 10 according to EN 14825								
Outdoor module / SPLIT box	AMS 10-6 / HBS 05-6		AMS 10-8 / HBS 05-12		AMS 10-12 / HBS 05-12		AMS 10-16 / HBS 05-16	
	Pdesign	SCOP	Pdesign	SCOP	Pdesign	SCOP	Pdesign	SCOP
SCOP 35 Average cli-	4.8	4.8	8.2	4.38	11.5	4.43	14,5	4.48
mate								
SCOP 55 Average cli-	5,3	3.46	7.0	3.25	10	3,38	14	3.43
mate								
SCOP 35 Cold climate	4,0	3,65	9	3.55	11.5	3.63	15	3.68
SCOP 55 Cold climate	5,6	2.97	10	2.78	13	2.85	16	2,9
SCOP 35 Warm climate	4,2	6.45	8	5,7	12	5.8	15	5.95
SCOP 55 Warm climate	4.76	4.58	8	4.58	12	4.7	15	4.8

Working range, compressor operation - heating

AMS 10

Heating mode

Water temperature °C

During shorter time it is allowed to have lower working temperatures on the water side, e.g. during start up.

Working range, compressor operation - cooling

AMS 10

Cooling mode

Water temperature °C

Output and COP at different supply temperatures

Maximum capacity including defrosting.

Max. specified power AMS 10-6

Heating output (kW)

Supply temperature (°C)

Max. specified power AMS 10-8

Output with lower fuse rating than recommended

Capacity AMS 10-12, fuse rating 16A

Heating output (kW) 16,00 35 14,00 45 12,00 55 10,00 8,00 6,00 4,00 2,00 0,00--20 -15 -10 -5 0 10 -25 5 15 Outdoor temperature (°C) Supply temperature (°C)

Capacity AMS 10-12, fuse rating 20A

Heating output (kW)

Energy labelling

Information sheet

Supplier		NIBE						
Model		AMS 10-6 / HBS 05- 6	AMS 10-8 / HBS 05- 12	AMS 10-12 / HBS 05-12	AMS 10-16 / HBS 05-16			
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55			
Seasonal space heating energy efficiency class, average climate		A++ / A++	A++ / A++	A++ / A++	A++ / A++			
Rated heat output (Pdesignh), average climate	kW	5 / 5	8 / 7	12 / 10	15 / 14			
Annual energy consumption space heating, average climate	kWh	2,089 / 3,248	3,882 / 4,447	5,382 / 6,136	6,702 / 8,431			
Seasonal space heating energy efficiency, average cli- mate	%	188 / 131	172 / 127	174 / 132	176 / 134			
Sound power level L _{WA} indoors	dB	35	35	35	35			
Rated heat output (Pdesignh), cold climate	kW	4 / 6	9 / 10	12 / 13	15 / 16			
Rated heat output (Pdesignh), warm climate	kW	4 / 5	8 / 8	12 / 12	15 / 15			
Annual energy consumption space heating, cold cli- mate	kWh	2,694 / 4,610	6,264 / 8,844	7,798 / 11,197	10,040 / 13,629			
Annual energy consumption space heating, warm cli- mate	kWh	872 / 1,398	1,879 / 2,333	2,759 / 3,419	3,370 / 4,183			
Seasonal space heating energy efficiency, cold climate	%	143 / 116	139 / 108	142 / 111	144 / 113			
Seasonal space heating energy efficiency, warm cli- mate	%	252 / 179	225 / 180	229 / 185	235 / 189			
Sound power level L _{WA} outdoors	dB	51	55	58	62			

Data for energy efficiency of the package

Model		AMS 10-6 / HBS 05- 6	AMS 10-8 / HBS 05- 12	AMS 10-12 / HBS 05-12	AMS 10-16 / HBS 05-16
Control module model		SMO	SMO	SMO	SMO
Temperature application	°C	35 / 55	35 / 55	35 / 55	35 / 55
Controller, class				/	
Controller, contribution to efficiency	%		4	.0	
Seasonal space heating energy efficiency of the pack- age, average climate	%	192 / 135	176 / 131	178 / 136	180 / 138
Seasonal space heating energy efficiency class of the package, average climate		A+++ / A++	A+++ / A++	A+++ / A++	A+++ / A++
Seasonal space heating energy efficiency of the pack- age, cold climate	%	147 / 120	143 / 112	146 / 115	148 / 117
Seasonal space heating energy efficiency of the pack- age, warm climate	%	256 / 183	229 / 184	233 / 189	239 / 193

The reported efficiency of the package also takes the controller into account. If an external supplementary boiler or solar heating is added to the package, the overall efficiency of the package should be recalculated.

Technical documentation

Type of heat pump Air-water \Box khaust-water \Box kin-water \Box water-water \Box water-age \Box ves \Box No Cimate \Box Average \Box cold \Box warm Emperature application \Box Average (55 °C) \Box work (35 °C) Applied standards EN14511 / EN14825 / EN12102 Ratel heat output Prated 5.3 kW Seasonal space heating energy efficiency n_{e} 131 % Declared capacity for space heating at part load and at outdoor temperature 1 \Box undoor temperature 1 \Box undoor temperature 1 \Box undoor entroperature 1 \Box	Model		AMS 10-6 / HBS 05-6								
$ \begin{vmatrix} $	Type of heat pump		🛛 Air-v	vater							
□ Brine-water □ Ves No Integrated immersion heater for additional heat Ves No Prest No No Climate Image: No No Climate Image: No No Climate Image: No No Reted heat output Prest No Declared capacity for space heating at part load and at outdoor temperature Declared coefficient of performance for space heating at part load and at outdoor temperature Ij = -7 °C Pdh 4.7 KW Tj = -7 °C COPd 1.88 - Tj = +2 °C Pdh 4.7 KW Tj = -7 °C COPd 1.88 - Tj = +2 °C Pdh 4.7 KW Tj = -7 °C COPd 1.88 - Tj = +12 °C Pdh 2.7 KW Tj = +12 °C COPd 4.82 - Tj = +12 °C Pdh 4.7 KW Tj = +12 °C COPd 1.72 - Tj = +12 °C Pdh 4.1 K			Exhaust-water								
Image: construction of the set of			Brine	-water							
Low-temperature heat pump Yes No Integrated immersion heater for additional heat Yes No Heat pump combination heater Yes No Climate Average Cold Warm Temperature application Average Cold Warm Applied standards ENI-14825 / ENI 2102 Entities 11 / ENI-14825 / ENI 2102 Rated heat output Prated 5.3 kW Seasonal space heating energy efficiency n, 131 % Declared capacity for space heating at part load and at outdoor temperature T Declared coefficient of performance for space heating at part load and at outdoor temperature T Declared coefficient of performance for space heating at part load and at outdoor temperature T T T T Seasonal space heating energy efficiency n, 131 % Tj = +7 °C Pdh 4.7 kW Tj = -7 °C COPd 1.88 - Tj = +7 °C Pdh 1.8 KW Tj = +7 °C COPd 4.72 - Tj = +7 °C Pdh 2.7 kW Tj = +1 °C COPd 6.47 - Tj = +7 °C											
Integrated immersion heater for additional heat Image is No Heat pump combination heater Image is No Climate Average (55 °C) Low (35 °C) Applied standards EN14511 / EN14825 / EN12102 Rated heat output P rated 5.3 kW Declared capacity for space heating at part load and at outdoor temperature Declared coefficient of performance for space heating at part load and at outdoor temperature Tj Tj =-7.°C Pdh 4.7 kW Seasonal space heating energy efficiency n, 131 % Declared capacity for space heating at part load and at outdoor temperature Tj =-7.°C COPd 1.88 - Tj =+2.°C Pdh 2.8 kW Tj =+2.°C COPd 3.26 - Tj =+2.°C Pdh 1.8 kW Tj =+7.°C COPd 4.72 - Tj =+12.°C Pdh 4.7 kW Tj = biv COPd 1.88 - Tj =+12.°C Pdh 4.7 kW Tj = biv COPd 1.77 - Tj = 10 C Pdh 4.7 kW Tj = biv COPd - <td< td=""><td>Low-temperature heat pump</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Low-temperature heat pump										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Integrated immersion beater for additional bea	+									
Preak During Combination Heater Image of the second s		·	L Yes								
Climate Average Cold Warm Temperature application Average (55 °C) Low (35 °C) Applied standards EN14511 / EN14825 / EN12102 Rated heat output Prate 6 5.3 KW Seasonal space heating energy efficiency n_{5} 131 % Declared capacity for space heating at part load and at outdoor temperature T_{j} Declared coefficient of performance for space heating at part load and at outdoor temperature T_{j} Declared coefficient of performance for space heating at part load and at outdoor temperature T_{j} $T_{j} = -7^{\circ}C$ Pdh 4.7 kW $T_{j} = -7^{\circ}C$ COPd 1.88 - $T_{j} = -2^{\circ}C$ Pdh 2.8 kW $T_{j} = +2^{\circ}C$ COPd 4.72 - $T_{j} = +2^{\circ}C$ Pdh 2.7 kW $T_{j} = +10^{\circ}C$ COPd 1.88 - $T_{j} = 10L$ Pdh 4.7 kW $T_{j} = 10L$ COPd 1.77 - $T_{j} = 15^{\circ}C$ (If TOL <-20 °C)	Heat pump combination heater		L Yes	N o							
Temperature applicationImage (55 °C)Image (55 °C)Image (55 °C)Image (55 °C)Applied standardsEN14511 / EN14825 / EN12102Rated heat outputPratedS3KWSeasonal space heating energy efficiencyns131%Declared capacity for space heating at part load and at outdoor temperature TjTDeclared coefficient of performance for space heating at part load and at outdoor temperature TjTj = -7 °CPdh4.7KWTj = -7 °CCOPd1.88-Tj = +2 °CPdh2.8KWTj = +2 °CCOPd4.72-Tj = +2 °CPdh1.8KWTj = +2 °CCOPd4.72-Tj = +1 °CPdh2.7KWTj = +1 °CCOPd1.88-Tj = 10LPdh4.7KWTj = bivCOPd1.88-Tj = 10LPdh4.1KWTj = TOLCOPd1.88-Tj = 15 °C (if TOL < -20 °C)	Climate		🛛 Aver	age 🗌	Cold 🔲 Warm						
Applied standardsEN14511 / EN14825 / EN12102Rated heat outputPrated5.3KWSeasonal space heating energy efficiency η_{c} 131%Declared capacity for space heating at part load and at outdoor temperature TDeclared coefficient of performance for space heating at part load and at outdoor temperature T/Declared coefficient of performance for space heating at part load and at outdoor temperature T/Tj = -7 °CPdh4.7kWTj = -7 °CCOPd1.88-Tj = +2 °CPdh2.8kWTj = +2 °CCOPd3.26-Tj = +12 °CPdh2.7kWTj = +12 °CCOPd4.72-Tj = +12 °CPdh2.7kWTj = +12 °CCOPd4.72-Tj = +12 °CPdh4.7kWTj = +12 °CCOPd4.72-Tj = +12 °CPdh4.1kWTj = -15 °C (if TOL <-20 °C)	Temperature application		🛛 Aver	age (55 °C	:) 🔲 Low (35 °C)						
Rated heat outputPrated5.3kWSeasonal space heating energy efficiencyn.131%Declared capacity for space heating at part load and at outdoor temperatureDeclared conficient of performance for space heating at part load and at outdoor temperature TjDeclared conficient of performance for space heating at part load and at outdoor temperature TjTj = -7 °CPdh4.7kWTj = -7 °CCOPd1.88-Tj = +7 °CPdh2.8kWTj = +7 °CCOPd3.26-Tj = +7 °CPdh1.8kWTj = +7 °CCOPd4.72-Tj = +12 °CPdh1.8kWTj = 12 °CCOPd4.72-Tj = 15 °C (if TOL < -20 °C)	Applied standards		EN1451	1 / EN1482	25 / EN12102						
Declared capacity for space heating at part load and at outdoor temperature TDeclared coefficient of performance for space heating at part load and at outdoor temperature T TTj = -7 °CPdh4.7kWTj = -7 °CCOPd1.88-Tj = +2 °CPdh2.8kWTj = +2 °CCOPd3.26-Tj = +1 °CPdh2.7kWTj = +1 °CCOPd4.72-Tj = 10 °CPdh4.7kWTj = 10°CCOPd6.47-Tj = 10 °CPdh4.1kWTj = 10°CCOPd1.77-Tj = 10 °CPdh4.1kWTj = -15 °C (if TOL < -20 °C)	Rated heat output	Prated	5.3	kW	Seasonal space heating energy efficiency	η	131	%			
If j = 7° C Pdh 4.7 kW Tj = -7° C COPd 1.88 - Tj = +2° C Pdh 2.8 kW Tj = +2° C COPd 3.26 - Tj = +7° C Pdh 1.8 kW Tj = +7° C COPd 4.72 - Tj = +12° C Pdh 1.8 kW Tj = +12° C COPd 6.47 - Tj = +12° C Pdh 4.7 kW Tj = +12° C COPd 6.47 - Tj = +12° C Pdh 4.7 kW Tj = +12° C COPd 6.47 - Tj = TOL Pdh 4.1 kW Tj = +12° C COPd 1.88 - Tj = 1°C (if TOL < -20°C)	Declared capacity for space heating at part load	and at ou	tdoor tem	perature	Declared coefficient of performance for space h	eating at p	oart load a	nd at			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj				outdoor temperature Tj						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj = -7 °C	Pdh	4.7	kW	Tj = -7 °C	COPd	1.88	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj = +2 °C	Pdh	2.8	kW	Tj = +2 °C	COPd	3.26	-			
Tj = +12 °CPdh2.7kWTj = +12 °CCOPd6.47-Tj = bivPdh4.7kWTj = bivCOPd1.88-Tj = TOLPdh4.1kWTj = TOLCOPd1.77-Tj = -15 °C (if TOL < -20 °C)	Tj = +7 °C	Pdh	1.8	kW	Tj = +7 °C	COPd	4.72	-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Tj = +12 °C	Pdh	2.7	kW	Tj = +12 °C	COPd	6.47	-			
Tj = TOLPdh4.1kWTj = TOLCOPd1.77-Tj = -15 °C (if TOL < -20 °C)	Tj = biv	Pdh	4.7	kW	Tj = biv	COPd	1.88	-			
Tj = -15 °C (if TOL < -20 °C)PdhkWTj = -15 °C (if TOL < -20 °C)COPd-Bivalent temperatureT biv-7°CMin. outdoor air temperatureTOL-10°CCycling interval capacityPcychkWCycling interval efficiencyCOPcyc-Degradation coefficientCdh0.99-Max supply temperatureWTOL58°CPower consumption in modes other than active modeAdditional heatS°CPower consumption in modes other than active mode0.012kWRated heat outputPsup1.2kWThermostat-off modeP _{TO} 0.012kWType of energy inputElectricCrankcase heater modeP _{CK} 0kWType of energy inputElectricOther itemsCapacity controlVariableRated airflow (air-water)2,526m³/hSound power level, indoors/outdoors L_{WA} 35 / 51dBNominal heating medium flowm³/hAnnual energy consumptionQ _{HE} 3,248kWhBrine flow brine-water or water-water heatm³/hContact informationNIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – SwedenSoude power	Tj = TOL	Pdh	4.1	kW	Tj = TOL	COPd	1.77	-			
Bivalent temperature Tow -7 °C Min. outdoor air temperature TOL -10 °C Cycling interval capacity Pcych kW Cycling interval efficiency COPcyc - Degradation coefficient Cdh 0.99 - Max supply temperature WTOL 58 °C Power consumption in modes other than active mode Additional heat Psip 1.2 kW Pomer consumption in modes other than active mode PoFF 0.007 kW Rated heat output Psip 1.2 kW Thermostat-off mode Pro 0.012 kW Type of energy input Electric Crankcase heater mode PcK 0 kW Crankcase heater mode 2,526 m³/h Other items Capacity control Variable Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 KWh Brine flow brine-water or water-water heat m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21	Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-			
Bivalent temperatureT biv-7°CMin. outdoor air temperatureTOL-10°CCycling interval capacityPcychkWCycling interval efficiencyCOPcyc-Degradation coefficientCdh0.99-Max supply temperatureWTOL58°CPower consumption in modes other than active modeAdditional heatAdditional heatOff modePoFF0.007kWRated heat outputPsup1.2kWThermostat-off modePTO0.012kWStandby modePSB0.012kWType of energy inputElectric-Crankcase heater modePCK0kWType of energy input2,526m³/hOther itemsCapacity controlVariableRated airflow (air-water)2,526m³/hSound power level, indoors/outdoorsLWA35 / 51dBNominal heating medium flowm³/hAnnual energy consumptionQHE3,248kWhBrine flow brine-water or water-water heat pumpsm³/hContact informationNIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden-											
Cycling interval capacity Pcych kW Cycling interval efficiency COPcyc - Degradation coefficient Cdh 0.99 - Max supply temperature WTOL 58 °C Power consumption in modes other than active mode Additional heat - Additional heat - </td <td>Bivalent temperature</td> <td>T_{biv}</td> <td>-7</td> <td>°C</td> <td>Min. outdoor air temperature</td> <td>TOL</td> <td>-10</td> <td>°C</td>	Bivalent temperature	T _{biv}	-7	°C	Min. outdoor air temperature	TOL	-10	°C			
Degradation coefficientCdh0.99-Max supply temperatureWTOL58°CPower consumption in modes other than active modeOff modePOFF0.007KWRated heat outputPsup1.2KWThermostat-off modePTO0.012KWElectricElectricStandby modePSB0.012KWType of energy inputElectricCrankcase heater modePCK0KWElectricContact informationOther itemsCapacity controlVariableRated airflow (air-water)2,526m³/hSound power level, indoors/outdoorsLWA35 / 51dBNominal heating medium flowm³/hAnnual energy consumptionQHE3,248kWhBrine flow brine-water or water-water heat pumpsm³/hNIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-			
Power consumption in modes other than active mode Additional heat Off mode POFF 0.007 KW Rated heat output Psup 1.2 kW Thermostat-off mode PTO 0.012 kW Type of energy input Electric Standby mode PSB 0.012 kW Type of energy input Electric Crankcase heater mode PCK 0 kW Image: Standby mode integration of the standby mode integration	Degradation coefficient	Cdh	0.99	-	Max supply temperature	WTOL	58	°C			
Power consumption in modes other than active mode Additional heat Off mode P_{OFF} 0.007 kW Rated heat output Psup 1.2 kW Thermostat-off mode P_{TO} 0.012 kW Electric Standby mode P_{SB} 0.012 kW Type of energy input Electric Crankcase heater mode P_{CK} 0 kW Other items 0 kW x/2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden											
Off mode P_{OFF} 0.007kWRated heat outputPsup1.2kWThermostat-off mode P_{TO} 0.012kW </td <td>Power consumption in modes other than active</td> <td>mode</td> <td></td> <td></td> <td>Additional heat</td> <td></td> <td></td> <td></td>	Power consumption in modes other than active	mode			Additional heat						
Thermostat-off mode P_{TO} 0.012 kW Standby mode P_{SB} 0.012 kW Type of energy input Electric Crankcase heater mode P_{CK} 0 kW Other items 0 kW Other items Capacity control Variable Rated airflow (air-water) 2,526 m ³ /h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m ³ /h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m ³ /h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Off mode	POFF	0.007	kW	Rated heat output	Psup	1.2	kW			
Standby mode P _{SB} 0.012 kW Type of energy input Electric Crankcase heater mode P _{CK} 0 kW Other items Capacity control Variable Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Thermostat-off mode	P _{TO}	0.012	kW							
Crankcase heater mode P _{CK} 0 kW Other items Other items Capacity control Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Standby mode	P _{SB}	0.012	kW	Type of energy input		Electric				
Other items Capacity control Variable Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Crankcase heater mode	P _{CK}	0	kW							
Other items Capacity control Variable Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden											
Capacity control Variable Rated airflow (air-water) 2,526 m³/h Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Other items										
Sound power level, indoors/outdoors L _{WA} 35 / 51 dB Nominal heating medium flow m³/h Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Capacity control		Variable		Rated airflow (air-water)		2,526	m³/h			
Annual energy consumption Q _{HE} 3,248 kWh Brine flow brine-water or water-water heat pumps m³/h Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Sound power level, indoors/outdoors	L _{WA}	35 / 51	dB	Nominal heating medium flow			m ³ /h			
Contact information NIBE Energy Systems – Box 14 – Hannabadsvägen 5 – 285 21 Markaryd – Sweden	Annual energy consumption	Q _{HE}	3,248	kWh	Brine flow brine-water or water-water heat pumps			m³/h			
	Contact information	NIBE En	ergy Syst	ems – Box	(14 – Hannabadsvägen 5 – 285 21 Markaryd –	Sweden		······································			

Model		AMS 10-8 / HBS 05-12						
Type of heat pump		🛛 Air-w	vater					
		Exha	ust-water					
		Rrine						
			. water					
			er-water					
Low-temperature near pump		L Yes	🛛 No					
Integrated immersion heater for additional heat	t	🗌 Yes	🛛 No					
Heat pump combination heater		🔲 Yes	🛛 No					
Climate		🛛 Aver	age 🗖	Cold 🔲 Warm				
Temperature application		Aver.	age (55 °C) 🔲 Low (35 °C)				
Applied standards		EN14825	5 / EN1451	11 / EN12102				
Rated heat output	Prated	7	kW	Seasonal space heating energy efficiency	η	127	%	
Declared capacity for space heating at part load of Tj	and at out	tdoor temp	perature	Declared coefficient of performance for space heating at part load a outdoor temperature Ti				
Tj = -7 °C	Pdh	6.3	kW	Tj = -7 °C	COPd	1.94	-	
Tj = +2 °C	Pdh	3.9	kW	Tj = +2 °C	COPd	3.11	-	
Tj = +7 °C	Pdh	2.6	kW	Tj = +7 °C	COPd	4.42	-	
Tj = +12 °C	Pdh	3.7	kW	Tj = +12 °C	COPd	5.93	-	
Tj = biv	Pdh	6.6	kW	Tj = biv	COPd	1.83	-	
Tj = TOL	Pdh	5.9	kW	Tj = TOL	COPd	1.86	-	
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-	
Bivalent temperature	T _{biv}	-9	°C	Min. outdoor air temperature	TOL	-10	°C	
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-	
Degradation coefficient	Cdh	0.97	-	Max supply temperature	WTOL	58	°C	
Power consumption in modes other than active r	node			Additional heat				
Off mode	POFF	0.002	kW	Rated heat output	Psup	1.1	kW	
Thermostat-off mode	P _{TO}	0.010	kW					
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electric		
Crankcase heater mode	P _{CK}	0.030	kW					
Other items								
Capacity control		Variable		Rated airflow (air-water)		3,000	m³/h	
Sound power level, indoors/outdoors	L _{WA}	35 / 55	dB	Nominal heating medium flow		0.60	m³/h	
Annual energy consumption	Q _{HE}	4,447	kWh	Brine flow brine-water or water-water heat pumps			m³/h	
Contact information	NIBE En	ergy Syst	ems – Box	14 – Hannabadsvägen 5 – 285 21 Markaryd –	Sweden			

Model				AMS 10-12 / HBS 05-12			
Type of heat pump		🛛 Air-v	vater				
		Exha	ust-water				
			. water				
			er-water				
Low-temperature near pump		L Yes	X No				
Integrated immersion heater for additional heat	t	🗌 Yes	🛛 No				
Heat pump combination heater		Yes	🛛 No				
Climate		🛛 Aver	age 🗌	Cold 🔲 Warm			
Temperature application		🛛 Aver	age (55 °C) 🔲 Low (35 °C)			
Applied standards		EN14825	5 / EN1451	1 / EN12102			
Rated heat output	Prated	10	kW	Seasonal space heating energy efficiency	η	132	%
Declared capacity for space heating at part load o Tj	and at out	door tem	emperature Declared coefficient of performance for space heating at part loa				
Tj = -7 °C	Pdh	8.9	kW	Tj = -7 °C	COPd	1.99	-
Tj = +2 °C	Pdh	5.5	kW	Tj = +2 °C	COPd	3.22	-
Tj = +7 °C	Pdh	3.5	kW	Tj = +7 °C	COPd	4.61	-
Tj = +12 °C	Pdh	5.0	kW	Tj = +12 °C	COPd	6.25	-
Tj = biv	Pdh	9.2	kW	Tj = biv	COPd	1.90	-
Tj = TOL	Pdh	8.1	kW	Tj = TOL	COPd	1.92	-
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-
Bivalent temperature	T _{biv}	-8	°C	Min. outdoor air temperature	TOL	-10	°C
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-
Degradation coefficient	Cdh	0.98	-	Max supply temperature	WTOL	58	°C
Power consumption in modes other than active r	node			Additional heat			
Off mode	POFF	0.002	kW	Rated heat output	Psup	1.9	kW
Thermostat-off mode	P _{TO}	0.014	kW				
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electric	
Crankcase heater mode	P _{CK}	0.035	kW				
Other items							
Capacity control		Variable		Rated airflow (air-water)		4,380	m³/h
Sound power level, indoors/outdoors	L _{WA}	35 / 58	dB	Nominal heating medium flow		0.86	m³/h
Annual energy consumption	Q _{HE}	6,136	kWh	Brine flow brine-water or water-water heat pumps			m³/h
Contact information	NIBE En	ergy Syst	ems – Box	: 14 – Hannabadsvägen 5 – 285 21 Markaryd –	Sweden		

Model		AMS 10-16 / HBS 05-16						
Type of heat pump		🛛 Air-w	vater					
		Exha	ust-water					
		Rrine						
			. water					
			er-water					
Low-temperature near pump		L Yes	🛛 No					
Integrated immersion heater for additional heat	t	🗌 Yes	🛛 No					
Heat pump combination heater		🔲 Yes	🛛 No					
Climate		🛛 Aver	age 🗖	Cold 🔲 Warm				
Temperature application		🛛 Aver	age (55 °C) 🗖 Low (35 °C)				
Applied standards		EN14825	5 / EN1451	1 / EN12102				
Rated heat output	Prated	14	kW	Seasonal space heating energy efficiency	η _s	134	%	
Declared capacity for space heating at part load of Tj	and at out	tdoor tem	perature	ature Declared coefficient of performance for space heating at part load outdoor temperature Tj				
Tj = -7 °C	Pdh	12.5	kW	Tj = -7 °C	COPd	2.01	-	
Tj = +2 °C	Pdh	7.6	kW	Tj = +2 °C	COPd	3.29	-	
Tj = +7 °C	Pdh	4.9	kW	Tj = +7 °C	COPd	4.68	-	
Tj = +12 °C	Pdh	6.8	kW	Tj = +12 °C	COPd	6.51	-	
Tj = biv	Pdh	12.7	kW	Tj = biv	COPd	1.95	-	
Tj = TOL	Pdh	11.0	kW	Tj = TOL	COPd	1.95	-	
Tj = -15 °C (if TOL < -20 °C)	Pdh		kW	Tj = -15 °C (if TOL < -20 °C)	COPd		-	
Bivalent temperature	T _{biv}	-8	°C	Min. outdoor air temperature	TOL	-10	°C	
Cycling interval capacity	Pcych		kW	Cycling interval efficiency	COPcyc		-	
Degradation coefficient	Cdh	0.98	-	Max supply temperature	WTOL	58	°C	
Power consumption in modes other than active r	node			Additional heat				
Off mode	POFF	0.002	kW	Rated heat output	Psup	1.2	kW	
Thermostat-off mode	P _{TO}	0.016	kW					
Standby mode	P _{SB}	0.015	kW	Type of energy input		Electric		
Crankcase heater mode	P _{CK}	0.035	kW					
Other items								
Capacity control		Variable		Rated airflow (air-water)		6,000	m³/h	
Sound power level, indoors/outdoors	L _{WA}	35 / 62	dB	Nominal heating medium flow		1.21	m³/h	
Annual energy consumption	Q _{HE}	8,431	kWh	Brine flow brine-water or water-water heat pumps			m³/h	
Contact information	NIBE En	ergy Syst	ems – Box	: 14 – Hannabadsvägen 5 – 285 21 Markaryd –	Sweden			

Electrical circuit diagram

AMS 10-6 POWER SOURCE 1 PHASE 220–240V 50Hz 220V 60Hz 13 PWB ASSY PWB1 DIODE STACK1 POWER TRANSISTOR T (YE) (YE) L1 ₽ (BK) L TA A (RD) T11, (BL) (BL) T12 2500 204 12 (WH) S.IN Ν V (WH) + + MS G1 (YG) Т Т W (BK) F8 ⊥ \mathbf{r} 250V 20A (YG) 上 G2 DIODE STACK2 PAM CIRCUIT PAM CIRCUIT TERMINAL BLOCK 2 (WH F3 T 1A L 250V SWITCHING POWER CIRCUIT F 3.15A L 250V 4 (BK) CNFAN (WH) ⅔∕∾ <u>M</u>) F6 T 1A L 250V (RD) 3 FMC (RD) CN205 (WH) CNHEAT CNTH (BK) CNEEV (WH 13 2 TO INDOOR UNIT (\mathbb{M}) POWER WIRES 2⁄N 20S Н FFV 3 SIGNAL WIRE EARTH WIRE

AMS 10-8

230V ~ 50Hz

AMS 10-12

AMS 10-16

Designa- tion	Description
205	Solenoid for 4-way valve
52X1	Auxiliary relay (for CH)
52X2	Auxiliary relay (for DH)
52X3	Auxiliary relay (for 20S)
52X4	Auxiliary relay (for SV1)
63H1	High pressure pressostat
C1	Capacitor
СН	Compressor heater
CM	Compressor motor
CnA~Z	Terminal block
CT	Current sensor
DH	Drain pan heater
DM	Diode module
F	Fuse
FM01, FM02	Fan motor
IPM	Intelligent power module
L/L1	Induction coil
LED1	Indication lamp (red)
LED2	Indication lamp (green)
LPT	Low pressure transmitter
QN1 (EEV- H)	Expansion valve for heating
QN3 (EEV- C)	Expansion valve for cooling
SW1, 9	Pumpdown
SW3, 5, 7, 8	Local settings
ТВ	Terminal block
BT28	Temperature sensor, outdoor air
(Tho-A)	
Tho-D	Temperature sensor, hot gas
Tho-R1	Temperature sensor, heat exchanger out
Tho-R2	Temperature sensor, heat exchanger, in
Tho-S	Temperature sensor, suction gas
Tho-P	Temperature sensor, IPM

12 Item register

Item register

Α

Accessibility, electrical connection, 26 Accessories, 36 Alarm list, 33 Assembly, 8

С

Checklist: Checks before commissioning, 7 Commissioning and adjusting, 30 Compressor heater, 30 Communication connection, 29 Component location, electrical panel, 19 Component location AMS 10, 14 Compressor heater, 30 Connecting accessories, 29 Connections, 27 Control - Heat pump EB101, 31

D

Delivery and handling, 8 Assembly, 8 Installation area, 11 Removing the covers, 12 Transport and storage, 8 Dimensions, 38 Disturbances in comfort, 32

Ε

Electrical circuit diagram, 56 Electrical components, 26 Electrical connections, 25 Accessibility, electrical connection, 26 Communication connection, 29 Connecting accessories, 29 Connections, 27 Electrical components, 26 General, 25 Power connection, 27 Energy labelling, 51 Data for energy efficiency of the package, 51 Information sheet, 51 Technical documentation, 52 Environmental information, 6

G

General, 25

L

Important information, 4 Recovery, 6 Safety information, 4 System solution, 4 Installation area, 11

L

List of components AMS 10 (EZ101), 18

М

Marking, 4

Ρ

Pipe connections, 24 Power connection, 27

R

Recovery, 6 Removing the covers, 12

S

Safety information, 4 Checklist: Checks before commissioning, 7

Environmental information, 6 Marking, 4 Safety precautions, 4 Serial number, 6 Symbols, 4 Symbols on AMS 10, 4 Safety precautions, 4 Sensor placement, 21 Serial number, 6 Sound pressure levels, 42 Symbols, 4 Symbols on AMS 10, 4 System solution, 4 т

Technical data, 38 Dimensions, 38 Electrical circuit diagram, 56 Energy labelling, 51 Sound pressure levels, 42 Technical Data, 43 Technical Data, 43 The heat pump design, 14 Component location AMS 10, 14 Component position electrical panel, 19 Electrical components AMS 10, 20 List of components AMS 10 (EZ101), 18 Transport and storage, 8 Troubleshooting Sensor placement, 21

Contact information

AT	KNV Energietechnik GmbH, Gahberggasse 11, AT-4861 Schörfling
	Tel: +43 (0)7662 8963 E-mail: mail@knv.at www.knv.at
CH	NIBE Wärmetechnik c/o ait Schweiz AG, Industriepark, CH-6246 Altishofen
	Tel: +41 58 252 21 00 E-mail: info@nibe.ch www.nibe.ch
CZ	Druzstevni zavody Drazice s.r.o, Drazice 69, CZ - 294 71 Benatky nad Jizerou
	Tel: +420 326 373 801 E-mail: nibe@nibe.cz www.nibe.cz
DE	NIBE Systemtechnik GmbH, Am Reiherpfahl 3, 29223 Celle
	Tel: +49 (0)5141 7546-0 E-mail: info@nibe.de www.nibe.de
DK	Vølund Varmeteknik A/S, Member of the Nibe Group, Brogårdsvej 7, 6920 Videbæk
	Tel: +45 97 17 20 33 E-mail: info@volundvt.dk www.volundvt.dk
FI	NIBE Energy Systems OY, Juurakkotie 3, 01510 Vantaa
	Tel: +358 (0)9-274 6970 E-mail: info@nibe.fi www.nibe.fi
FR	NIBE Energy Systems France Sarl, Zone industrielle RD 28, Rue du Pou du Ciel, 01600 Reyrieux
	Tel : 04 74 00 92 92 E-mail: info@nibe.fr www.nibe.fr
GB	NIBE Energy Systems Ltd, 3C Broom Business Park, Bridge Way, S419QG Chesterfield
	Tel: +44 (0)845 095 1200 E-mail: info@nibe.co.uk www.nibe.co.uk
NL	NIBE Energietechniek B.V., Postbus 634, NL 4900 AP Oosterhout
	Tel: 0168 477722 E-mail: info@nibenl.nl www.nibenl.nl
NO	ABK AS, Brobekkveien 80, 0582 Oslo, Postadresse: Postboks 64 Vollebekk, 0516 Oslo
	Tel: +47 23 17 05 20 E-mail: post@abkklima.no www.nibeenergysystems.no
PL	NIBE-BIAWAR Sp. z o. o. Aleja Jana Pawła II 57, 15-703 BIALYSTOK
	Tel: +48 (0)85 662 84 90 E-mail: sekretariat@biawar.com.pl www.biawar.com.pl
RU	© "EVAN" 17, per. Boynovskiy, RU-603024 Nizhny Novgorod
	Tel: +7 831 419 57 06 E-mail: kuzmin@evan.ru www.nibe-evan.ru
SE	NIBE AB Sweden, Box 14, Hannabadsvägen 5, SE-285 21 Markaryd
	Tel: +46 (0)433 73 000 E-mail: info@nibe.se www.nibe.se
Force	untriag not montion in this list places contact Nike Swaden or shack www.nike ou for more information
FUI COL	anches not mention in this list, please contact hibe sweden of check www.hibe.eu for more information.

NIBE AB Sweden Hannabadsvägen 5 Box 14 SE-285 21 Markaryd info@nibe.se www.nibe.eu

